REACTION OF α-DIKETONES WITH ETHANOLAMINE

Benito Alcaide^{*a}, Rafael Pérez-Ossorio^a, Joaquín Plumet^a, Manuel Rico^b, and Ignacio M. Rodriguez-Campos^a

- a : Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, Ciudad Universitaria, 28040-Madrid, Spain.
- b : Instituto de Estructura de la Materia, C.S.I.C., Serrano 119, 28006-Madrid, Spain.

<u>Summary</u>: Butanedione and ethanolamine react to yield 4,8-diaza-1,5-dioxadecalin $\underline{3}$, 2,3-epoxy-8-aza-1,4,5-trioxadecalin $\underline{4}$, and 2-hydroxy-1,6-dihydro-oxazine $\underline{5}$ a according to the molar ratios of the reagents. With benzil and 1-phenyl-1,2-propanedione only the related oxazines $\underline{5}$ are obtained in equilibrium with their open-chain tautomers.

The reactions of various α -diketones with ethanolamine and \underline{C} -substituted ethanolamines have been reported in connection with the synthesis of metallic complexes of polydentate Schiff bases. Adekeye <u>et al.</u> 1 claim that α -diimines 1 are obtained in the reactions of butanedione and benzil with ethanolamine. Dieck and Dietrich 2 report the synthesis of bisoxazolidine 2 by reaction of butanedione and (S)-2-amino-1-butanol.

Totally different results are reported here for the reactions of butanedione, benzil, and 1-phenyl-1,2-propanedione with ethanolamine. We also describe the unique behaviour of butanedione as compared to the other diketones studied. In the first case the molar ratios of the reagents have a remarkable influence on the nature and proportions of the resulting products, $\underline{3}$, $\underline{4}$, and $\underline{5a}^3$. Thus, in ethanolamine excess (molar ratio = 2) 4,8-diaza-1,5-dioxadecalin $\underline{3}$ is obtained as the main product, while with butanedione in excess (molar ratio = 1.5) 2,3-epoxy-8-aza-1,4,5-trioxadecalin $\underline{4}$ is isolated as the predominant product $\underline{4}$. Equimolar amounts of reagents lead to a mixture of $\underline{3}$ and $\underline{5a}$ in 35 and 50% respectively.

 1 H and 13 C n.m.r. data of compounds $\underline{3}$ and $\underline{4}$ reveal the existence of only one diastereoisomer in each case, despite the chiral character of both bridge-head carbon atoms, and allow us to make an unequivocal identification of their structures. The 1 H n.m.r. spectra of both $\underline{3}$ and $\underline{4}$ show an ABCD system for the peripheral methylene protons 5 . Coupling constants for compound $\underline{3}$ clearly allow us to discard the bisoxazolidine (type $\underline{2}$) structure and provide unambiguous evidence for the morpholino-morpholine framework having the trans configuration (Table). Thus, a coupling constant value of 12 Hz is

characteristic of $^3J_{aa}$ and values of 1.0 Hz and 3.1-3.8 Hz are consistent with $^3J_{ee}$ and $^3J_{ae}$, respectively, for a morpholine ring of fixed configuration 6 . To our knowledge, this is the first <u>trans</u>-morpholino-morpholine structure to be reported 7 . Also, it has been shown that, in solution, $\underline{3}$ is in equilibrium with $\underline{7}$, the bicyclic tautomer being predominant 8 (80%). From similar considerations based on spectral parameters a <u>trans</u>-morpholino-dioxane structure is assigned

<u>Table</u>.- Coupling constants within the CH_2 - CH_2 moiety of compounds $\underline{3}$ and $\underline{4}$.

to compound $\underline{4}$ (Table). Differences in the vicinal couplings between $\underline{3}$ and $\underline{4}$, can be easily accounted for by accepting a slight flattening (-8° in the torsion angle N-C-C-O) of the chair, according to the results provided by the

application of the empirical formulation of the Karplus equation put forward by Haasnoot et al. 9 . The large difference observed in the geminal coupling

 2 J $_{3.4}$ between $\underline{3}$ and $\underline{4}$ must be a consequence of a change in the orientation of the N lone pair of electrons with respect to the adjacent methylene group brought about by the bulky groups in the second ring. An equatorial position of the lone pair in $\underline{4}$ would be required to match the observed highly negative value of 2 J $_{3.4}$ in $\underline{4}^{10}$, which is indirectly

evidenced by the observation of a long range coupling (1.1 Hz) between the methyl group at 1.42 p.p.m. ($_{3}^{-c9}$) and the NH proton (axial) in $_{4}^{-c9}$. The formation of $_{4}^{-c9}$ may arise through the intermediate $_{1}^{-c9}$ -diol $_{2}^{-c9}$ formed by 1,2-addition of ethanolamine to butanedione as shown in Scheme $_{1}^{11}$.

Scheme

With benzil and 1-phenyl-1,2-propanedione whatever the molar ratios of the reagents and experimental conditions (catalyst, solvent and temperature) the related 2-hydroxy-5,6-dihydro-oxazines, $\underline{5b}$ and $\underline{5c}$ are obtained 12 . In solution, equilibrium with the related open-chain α -iminoketone tautomer $\underline{6}$ is observed.

The extension of the above reaction to other $\alpha\text{-dicarbonyl}$ compounds and ethanolamines and the study of the tautomerism observed are now under consideration.

 $\frac{\text{Acknowledgements}}{\text{unpublished results}}. \text{ We thank Prof. J. Barluenga for communication of some unpublished results}^{7b}.$

References and Notes

- 1. S. B. Adekeye, E. O. Erinoso, and B. N. Ghose, <u>An. Quim.</u>, 79B, 353 (1983).
- 2. H. tom Dieck and J. Dietrich, <u>Chem. Ber.</u>, 117, 694 (1984).
- 3. Reaction was carried out in either ether or benzene at room temperature. Compound $\underline{3}$, m.p. $106-108^{\circ}\text{C}$ (AcOEt); yield : 46% of pure product; ^{13}C n.m.r. (DCCl $_3$, $_6$) : 21.85 ($2\times\text{CH}_3$), 39.27 (N-CH $_2$), 63.38 ($0-\text{CH}_2$), 84.22 (N-C-O) 1 H n.m.r. (DCCl $_3$, $_6$) : 1.40 (s, $2\times\text{CH}_3$), 2.43 (m, H 4), 3.45 (m, H 3),

3.77 (m, H^2), 3.94 (m, H^1). Compound $\frac{4}{4}$, m.p. $89-91^{\circ}$ C (AcOEt-hexane); yield : 50% of pure product; 13 C n.m.r. (DCCl₃, δ) : 10.49 and 12.32 (CH_3 -C9 and CH_3 -C10) , 16.04 and 17.12 (CH_3 -C-C-CH₃), 41.99 (CR_3), 57.93 (CR_3), 93.63 (CR_3), 97.50 (CR_3), 103.51 (CR_3 and CR_3). 10.10 H n.m.r. (CR_3) : 1.35 (CR_3) : 1.35 (CR_3) : 1.35 (CR_3), 3.02 (CR_3), 3.05 (CR_3)

- 4. $\underline{5a}$ appears as minor product in both cases as indicated by the 1 H n.m.r. of the reaction mixture.
- 5. At 360 MHz. The ABCD patterns for compounds $\underline{3}$ and $\underline{4}$ were subjected to a complete analysis by using the LAOCOON-3 program. Calculations were carried out on a IBM/UM 370 computer. The reported coupling constants are considered to be accurate within ± 0.06 Hz.
- 6. For related oxygen compounds see: B. Fuchs, A. Ellencweig, and U. Burkert, <u>Tetrahedron</u>, 40, 2011 (1984).
- 7 <u>cis</u>-Heterodecalines related to <u>3</u> have been recently reported: (a) A. Le Rouzic, D. Raphalen, D. Papillon, and M. Kerfanto, <u>Tetrahedron Lett.</u>, 1853 (1985); J. Barluenga, F. Aznar, R. Liz, and C. Casal, <u>Chem. Ber.</u>, in the press.
- 8. I.r. ($HCCl_3$) : v (C=N) 1660 cm^{-1} ; ^{13}C n.m.r. ($DCCl_3$) : δ (C=N) 169.43; ^{1}H n.m.r. ($DCCl_3$, δ) : 1.45 (s, CH_3-C-O), 2.04 (t, J=1.7, $CH_3-C=N$), 2.78 (m, $^2J=12.93$, $^3J=4.9$ and 5.3, CH_2-NH), 3.54 (m, $^3J=5.0$ and 8.3, $CH_2-N=C$), 3.63 (t, $^3J=5.1$, CH_2-OH). These signals appear neatly resolved in the 360 MHz spectrum of 3.
- 9. C. A. G. Haasnoot, F. A. A. M. de Leeuw, and C. Altona, <u>Tetrahedron</u>, <u>36</u>, 2783 (1980).
- 10. P. J. Chivers and T. A. Crabb, <u>Tetrahedron</u>, 26, 3389 (1970).
- 11. Reactions of butanedione with some diols and polyols yielding 1,4-dioxane derivatives have been previously reported. See, for instance: (a) 0. Neunhoeffer and H. Paul, <u>J. Prakt. Chem.</u>, (4), 4, 257 (1957); (b) J. Gelas and A. Thiallier, <u>Carbohyd. Res.</u>, 30 (1), 21 (1973).
- 10. In nearly quantitative yield in both cases. 5b, m.p. 91-92°C (AcOEt-hexane). 5c, m.p. 104-106°C (Benzene).

(Received in UK 20 January 1986)